Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology

https://doi.org/10.1098/rsif.2018.0520

Abstract

The talus is one of the most commonly preserved post-cranial elements in the platyrrhine fossil record. Talar morphology can provide information about postural adaptations because it is the anatomical structure responsible for transmitting body mass forces from the leg to the foot. The aim of this study is to test whether the locomotor behaviour of fossil Miocene platyrrhines could be inferred from their talus morphology. The extant sample was classified into three different locomotor categories and then talar strength was compared using finite-element analysis. Geometric morphometrics were used to quantify talar shape and to assess its association with biomechanical strength. Finally, several machine-learning (ML) algorithms were trained using both the biomechanical and morphometric data from the extant taxa to infer the possible locomotor behaviour of the Miocene fossil sample. The obtained results show that the different locomotor categories are distinguishable using either biomechanical or morphometric data. The ML algorithms categorized most of the fossil sample as arboreal quadrupeds. This study has shown that a combined approach can contribute to the understanding of platyrrhine talar morphology and its relationship with locomotion. This approach is likely to be beneficial for determining the locomotor habits in other fossil taxa.

Publication
In J. R. Soc. Interface 15, 20180520 (2018)
Thomas A. Püschel
Thomas A. Püschel
Postdoctoral researcher

I am an evolutionary anthropologist and vertebrate palaeobiologist mainly focused on human, primate and mammalian evolution. My main interest is to study organismal evolution by reconstructing and comparing the palaeobiology of fossils to their living ecological relatives. In order to do this, I apply a combination of phylogenetics, 3D morphometrics, virtual biomechanical techniques, computational simulations, statistical modelling, phylogenetic comparative methods, and fieldwork. I am part of the Venditti group, University of Reading, within the framework of the Leverhulme project ‘The evolutionary and biogeographical routes to hominin diversity’. I am also a research affiliate at the Institute of Human Sciences, University of Oxford, where I work together with the Paleo-Primate Project Gorongosa, Mozambique.

Related