Finite element analysis of the proximal phalanx of the thumb in Hominoidea during simulated stone tool use


Finite element analysis was applied to analyze six individuals from different primate species (Homo sapiens Linnaeus, 1758, Homo neanderthalensis King, 1864, Pan troglodytes Blumenbach, 1779, Gorilla gorilla Savage, 1847, Pongo pygmaeus Linnaeus, 1760 et Hylobates lar Linnaeus, 1771) to identify stress distribution patterns on the pollical proximal phalanx during simulated hammerstone use. We expected the stress to be better distributed in our species than in other hominids based on the idea that, unlike apes, the human hand is adapted to tool-related behaviors. Our results indicate that the human phalanx unevenly distributes stresses and is one of the most fragile of all, especially when a small hammerstone is simulated. Tool orientation relative to the phalanx did not have a substantial effect on average stress or distribution. We conclude that great apes can resist loads exerted during this activity more efficiently than humans and that there were probably other evolutionary factors acting on this bone in our species.

In Comptes Rendus Palevol 19, 2 (2020)
Thomas A. Püschel
Thomas A. Püschel
Postdoctoral researcher

I am a palaeoprimatologist and vertebrate palaeobiologist mainly focused on primate and mammalian evolution. My main interest is to study organismal evolution by reconstructing and comparing the palaeobiology of fossils to their living ecological relatives. In order to do this, I apply a combination of predictive modelling, 3D morphometrics, virtual biomechanical techniques, computational simulations, phylogenetic comparative methods, and fieldwork. I have recently joined the Venditti group, University of Reading, within the framework of the Leverhulme project ‘The evolutionary and biogeographical routes to hominin diversity’. I am also a research affiliate at the Institute of Human Sciences, University of Oxford, where I work together with the Paleo-Primate Project Gorongosa, Mozambique.