Morphological integration and modularity in Diabrotica virgifera virgifera LeConte (Coleoptera Chrysomelidae) hind wings

https://doi.org/10.1016/j.jcz.2014.06.001

Abstract

The morphological integration of the hind wings of the western corn rootworm Diabrotica virgifera virgifera LeConte was investigated to get a better insight of the undergone by this invasive species. Geometric morphometric methods were used to test two modularity hypotheses associated with the wing development and function (hypothesis H1 anterior/posterior or H2 distal/proximal wing parts). Both hypotheses were rejected and the results showed the integrated behavior of the hind wings of D. v. virgifera. The hypothesized modules do not represent separate units of variation, so in a similar fashion as exhibited by the model species Drosophila melanogaster, the hind wings of D. v. virgifera act as a single functional unit. The moderate covariation strength found between anterior and posterior and distal and proximal parts of the hind wing of D. v. virgifera confirms its integrated behavior. We conclude that the wing shape shows internal integration, which could enable flexibility and thus enhance flight maneuverability. This study contributes to the understanding of morphological integration and modularity on a non-model organism. Additionally, these findings lay the groundwork for future flight performance and biogeographical studies on how wing shape and size vary across the endemic and expanded/invaded range in the USA and Europe infested with D. v. virgifera.

Publication
In Zoologischer Anzeiger 253,6,461-468(2014)
Thomas A. Püschel
Thomas A. Püschel
Leverhulme Early Career Fellow

I am a palaeoprimatologist and vertebrate palaeobiologist mainly focused on primate and mammalian evolution. My main interest is to study organismal evolution by reconstructing and comparing the palaeobiology of fossils to their living ecological relatives. In order to do this, I apply a combination of predictive modelling, 3D morphometrics, virtual biomechanical techniques, computational simulations, phylogenetic comparative methods, and fieldwork. I am currently collaborating on a diversity of projects that can be placed in the interface between biological anthropology, palaeontology, ecology and evolutionary biology, using cutting-edge informatic techniques. My Leverhulme Project has taken me to Gorongosa National Park, Mozambique, where I work together with the Paleo-Primate Project Gorongosa.

Related